25
de Febrero
Sexto de Primaria
Matemáticas
Aprendizaje esperado: Determinación de múltiplos y divisores
de números naturales. Análisis de regularidades al obtener los múltiplos de
dos, tres y cinco.
Énfasis: Usa las nociones de
múltiplo y de divisor a fin de hallar la estrategia ganadora.
¿Qué vamos a aprender?
Aprenderás
a determinar los múltiplos y divisores de números naturales para identificar la
estrategia ganadora.
¿Qué hacemos?
Hoy participarás de un juego
que te permitirá poner en práctica todo lo que has estado aprendiendo durante
las sesiones de esta semana. El juego se llama : “La pulga y las trampas”
Para este juego requieres del
material recortable que corresponde al Desafío 39 “La pulga y las trampas” de
tu libro de texto que está en las páginas 163, 165 y 167.
https://libros.conaliteg.gob.mx/20/P6DMA.htm#page/163
Ten a la mano tu libreta donde anotaste
los múltiplos de los números que trabajaste ayer para que revises y confirmes
la información que hoy se necesitará para el juego.
Recordarás que has trabajado
con los múltiplos de los números del 1 al 10. Observaste que hay números que se
repiten en la tabla pitagórica, porque son múltiplos de varios números
naturales.
Los múltiplos de un número son
todos aquellos productos que resultan de multiplicar ese número por todos y
cada uno de los números naturales.
En la sesion pasada aprendiste
que cuando necesitas encontrar el múltiplo de un número, lo multiplicas por
cualquier número natural.
Por ejemplo, si necesitas
encontrar un múltiplo cualquiera de 5, lo multiplicas por cualquier número
natural; en este caso se multiplicó por 15, entonces 5 x 15 es 75, así puedes
asegurar que 75 es múltiplo de 5, pero si te fijas bien también es múltiplo de 15,
pues estás multiplicando a 15 por otro número natural.
15 x 5 = 75
Lee la consigna de tu libro de
texto, página 83.
https://libros.conaliteg.gob.mx/20/P6DMA.htm#page/83
Consigna: En equipos de cinco
compañeros, jueguen a La pulga y las trampas, para ello, recorten y armen la recta
de las páginas 163 a 167.
Dadas las circunstancias, tu
jugarás utilizando las tablas de tu libro en las páginas 167, 165 y 163 del 0
al 60.
Empieza a jugar del 0 al 60.
Piensa dónde quieres poner las
tres rocas.
Una roca puede estar en el
número 20, pon un dibujo o marca de roca en ese número; otra puede estar en el
número 35 y otra en el 54; pon las marcas de las rocas en esos números.
Ahora elige cómo saltará tu
pulga, puede saltar de uno en uno, de dos en dos, tres en tres o como tú
quieras.
Tu pulga, ¿Cómo saltará? de dos
en dos, de tres en tres, o de seis en seis, elige.
Inicia en 0 y ve saltando tu
pulga de acuerdo al número elegido, por ejemplo, si elegiste tres, tu pulga
saltará pasando por los siguientes números: 0, 3, 6, 9, 12, 15, 18 y 21.
Como puedes observar, con estos
números tu pulga no cayó en ninguna trampa, ¡la libró!
Ahora continúa, del 21 sigue: 24, 27, 30, 33, 36 y
la sigue librando, no ha caído en la segunda trampa, así que puedes continuar
39, 42, 45, 48, 51, 54 en este ejemplo, la pulga saltarina cayó en la última
tramapa, lástima ya había librado las anteriores.
La pulga perdida, la pones en
el lado contrario, considerando que ya la perdiste.
¿Por qué piensas que la pulga
cayó en la trampa?
Continúa jugando, comienza en
el 0 y has que tu pulga salte de 6 en 6.
Comienza a realizar los saltos,
contando en voz alta: 0, 6, 12, 18, 24.
¡Pasó la primera trampa sin
caer en ella! Sigue 30, 36 y ya pasó la segunda trampa, vas por la última: 42,
48, 54 ¡Oh, no! volvió a caer en la misma trampa.
¿Por qué la pulga cayó en la
misma trampa cuando saltó de tres en tres y luego cuando saltó de seis en seis?
¿Ya supiste por qué?
Observa que sucede, si ahora
haces que tu pulga salte de 8 en 8, ojalá no caiga en una trampa.
Comienza a realizar los saltos,
contando en voz alta: 8, 16, 24, 32… ¡Uf, cerca estuvo cerca de caer en la
trampa!
Continúa: 40, 48, 56, ¡Ahora
estuvo más cerca de caer, pero la libró! ¿Cómo le hizo?
¿Qué crees que tenían las dos
pulgas anteriores que sea diferente de lo que tenía esta pulga?
¿Hay alguna relación entre los
números donde están las trampas y el tamaño de los brincos escogidos para las
primeras pulgas?
Observa la imagen siguiente,
compara los números de las pulgas que cayeron en las trampas con los números de
la pulga que libró todas las trampas.
Seguramente ya te diste cuenta
de que al saltar de 8 en 8 se brincan los números que tienen trampa, en cambio,
en los que brincaron las dos primeras pulgas caen en uno de esos números.
¿Y esos números donde brincan
las pulgas qué relación tienen con el número que se escogió para que brincaran
todas las pulgas?
Así es, son múltiplos de esos
números.
Recuerda que los múltiplos de
un número es como hacer su tabla de multiplicar, por eso, los múltiplos de la
pulga que saltaba de 8 en 8 no era ninguno de los números donde estaban las
trampas.
Considera que encontrar los
múltiplos de un número es como hacer la tabla de ese número, pero hasta el
infinito.
Ahora reflexiona, ¿Por qué las dos
primeras pulgas cayeron en la misma trampa?
En efecto, porque 54 es
múltiplo de 3 y también de 6.
Observa, 6 y todos sus
múltiplos también son múltiplos de 3.
Los múltiplos de 6 también son
múltiplos de 3 y si te fijas, 6 es múltiplo de 3.
Entonces puedes imaginar que
cuando un número es múltiplo de otro número, los múltiplos del primero también
son múltiplos del segundo; como en el 6 y el 3, donde todos los múltiplos de 6
también son múltiplos de 3, porque 6 es múltiplo de 3.
Elige un número y un múltiplo
de ese número, puede ser el 2 y el 4, porque el 4 es múltiplo de 2.
En tu cuaderno escribe los
números múltiplos de 2: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30.
Ahora, escribe los primeros
múltiplos de 4
4, 8, 12, 16, 20, 24, 28, 32
Observa, 4 es múltiplo de 2, enciérralo
en un óvalo; 8 es múltiplo de 2, márcalo también; 12 es múltiplo de 2, continúa
hasta encerrar todos los múltiplos de ambos números. ¿Qué sucede?
Ten presente que los múltiplos
de un número natural son aquellos números naturales que resultan de
multiplicarlo por otros números.
El Reto de Hoy:
Invita a alguien cercano a
jugar el juego de las pulgas y explícale por qué a veces la pulga cae en las
trampas y otras no.
Si te es posible, consulta
otros libros y materiales para saber más sobre el tema.
¡Buen trabajo!
Gracias por tu esfuerzo.
No hay comentarios.:
Publicar un comentario